
Reference Manual

See also the introductory document, which currently only exists in html.

1 Commands
To assign a new meaning to a key, use the bind statement:
bind some-command key-description

The command name should be all lowercase, as .sheetsrc files are case sensitive.

Most key descriptions take the form of a modifier key (like control or shift) followed by the
main key to be pressed. To specify the control key, write ctrl- in front of the main key;
write shift- for the shift key. The two can be combined, as in ctrl-shift-F1. The
name of the main key is always uppercase. For alphanumeric keys, the name of the key is the
key itself. For other keys, we use the following abbreviations:

UP, DOWN, LEFT, RIGHT, PGUP, PGDN, HOME, END, ENTER,
BACKSPACE, DELETE, TAB, BACKSLASH, LBRACKET, RBRACKET, F1-F12

Java refuses to recognize some key combinations, so don't be surprised if you can't assign a
command to a not-so-ordinary key. Also, Sheets only allows rebindings involving
alphanumeric keys if the ctrl key is specified. (In other words, you can rebind ctrl-A,but
not A or shift-A) Rebinding the mouse buttons is not currently supported.

This is a list of all commands you can bind to a key. Most, but not all, of these commands
have default key bindings.

1.1 Cursor Motion
forward-char [RIGHT]
Move cursor forward (right) one character

forward-char-select
Move cursor forward (right) one character while extending/shrinking the text selection

forward-word
Move cursor forward (right) one word

forward-word-select

Page 1

intro-doc.html
intro-doc.html
intro-doc.html

Move cursor forward (right) one word while extending/shrinking the text selection

backward-char
Move cursor back (left) one character

backward-char-select
Move cursor back (left) one character while extending/shrinking the text selection.

backward-word
Move cursor back (left) one word

backward-word-select
Move cursor back (left) one word while extending/shrinking the text selection

up-line
Move cursor up one line

up-line-select
Move cursor up one line while extending/shrinking the text selection

down-line
Move cursor down one line

down-line-select
Move cursor down one line while extending/shrinking the text selection

start-line
Move cursor to beginning of line

start-line-select
Move cursor to beginning of line while extending the text selection.

end-line
Move cursor to end of line

end-line-select
Move cursor to end of line while extending the text selection.

backward-selection
Moves to an earlier selection within the current window. Repeated usage will take you to
successively older selections. Use forward-selection to go the other way.

forward-selection
Moves to an more recent selection within the current window. Repeated usage will take
you to successively newer selections. Use backward-selection to go the other way.

Reference Manual

Page 2

#Sheets:rgs:13464
#Sheets:rgs:13464
#Sheets:rgs:13462
#Sheets:rgs:13462

up-fragment
Move cursor up one fragment, leaving the cursor at the end of the new fragment.

down-fragment
Move cursor down one fragment, leaving the cursor at the beginning of the new
fragment.

start-fragment
Move cursor to the beginning of fragment.

start-fragment-select
Move cursor to the beginning of fragment selecting the text between the current position
and the start.

end-fragment
Move the cursor to the end of the current fragment.

end-fragment-select
Move the cursor to the end of the current fragment selecting text between the current
position and the end.

start-sheet
Move cursor to the beginning of the top-level sheet in the current edit window.

end-sheet
Move the cursor to the end of the top-level sheet in the current edit window.

1.2 Scrolling
scroll-up-page
Scroll the window up a page without moving the cursor.

scroll-up-line
Scroll the window up a line without moving the cursor.

scroll-down-page
Scroll the window down a page without moving the cursor.

scroll-down-line
Scroll the window down a line without moving the cursor.

1.3 Miscellaneous Editing Commands
backward-char-delete

Reference Manual

Page 3

Deletes the character before the cursor.

forward-char-delete
Deletes the character after the cursor.

cut-text
Cuts the selected text into the clipboard.

copy-text
Copies the selected text into the clipboard.

paste-text
Interprets the contents of the clipboard as text, and inserts it where the text cursor is.

select-word
Select the word under the cursor

split-line
Splits a line into two lines, and moves the cursor to the beginning of the second line. (In
other words, this is the command for the ENTER key)

open-line
Like split-line, except doesn't move the cursor.

kill-line
Corresponds to the EMACS command of the same name. If at the end of the line, it
deletes the newline. Otherwise, it deletes all characters between the cursor and the end of
the line. (Unlike the Emacs command, our kill-line doesn't put anything in the cut buffer)

indent-line
Indents the line according to the automatic code indentation rules.

wrap-paragraph
Do line wrapping (filling) on an ASCII text paragraph. Useful primarily on comments,
since DocSheet paragraphs are automatically wrapped.

local-undo
Undoes the last edit command performed on the selected fragment. Multiple undo is
supported.

local-redo
Redoes the last edit command on the selected fragment that was undone.

show-replace-dialog
Displays the Search and replace dialog.

Reference Manual

Page 4

1.4 Fragment-based commands
cut-fragment
Cuts the selected fragment(s) into the clipboard.

copy-fragment
Copies the selected fragment(s) into the clipboard.

paste-fragment
Interprets the contents of the clipboard as fragments, and inserts them before the selected
fragment. Does nothing if the contents of the clipboard can't be interpreted as fragments.

remove-fragment
Removes the selected fragment(s) from the current sheet, but does not affect any other
references. See removing and destroying.

destroy-fragment
Destroys the selected fragments, removing them from all sheets and attributes where they
are currently referenced. See removing and destroying..

commit-fragment-edit
Commits the edit mode on the current fragment. This is equivalent to pushing the
"Commit" button.

abort-fragment-edit
Equivalent to hitting the "Abort" button for this fragment.

begin-fragment-edit
Makes sure that the current fragment is in edit mode.

toggle-edit-mode
If the selected fragment is being edited, commits the edit. Otherwise, begins editing the
selected fragment.

show-all-attributes
Shows all of the attributes for the selected fragment.

hide-all-attributes
Stop displaying any attributes on the current fragment. (Note -- this must be run from the
fragment itself, rather than from one of the attributes.)

1.5 Container-based Commands
show-container-properties-dialog

Reference Manual

Page 5

intro-doc.html#removing-and-destroying
intro-doc.html#removing-and-destroying
intro-doc.html#removing-and-destroying
intro-doc.html#removing-and-destroying
intro-doc.html#removing-and-destroying
intro-doc.html#removing-and-destroying
intro-doc.html#removing-and-destroying

Show the "properties" dialog for the selected (or enclosing) container. This will allow
you to set the title, export properties, etc.

commit-container-edits
Finds all edits in progress in the current container, and commits them.

abort-container-edits
Finds all edits in progress in the current container, and aborts them.

clone-sheet
Creates a temporary copy of the current sheet. The contents will be the same, but other
special properties (such as constraints or graphability) will be left behind.

recursive-flatten
Creates a new temporary sheet which contains all of the fragments nested (at any depth)
underneath the selected container. (Note that it will not remove the fragments from the
container itself -- it simply creates new references to them.)

sort-sheet-alphabetic
Sorts all of the fragments on the current sheet alphabetically by name. If the current sheet
is "permanent" it will first be copied into a temporary sheet.

sort-sheet-java
Sorts all of the fragments on the current sheet, by package, class, kind and name. If the
current sheet is "permanent" it will first be copied into a temporary sheet.

change-project-of-everything-reachable
Recursively walks through every fragment within the current (or enclosing) container,
and set it be in the same project. (However, remember that Java fragments usually take
their project from the package rather than being set directly. They will therefore only be
indirecly affected by this command.)

change-views-to-full
Changes every viewer within the current (or enclosing) container to be in the "full" view,
showing the entire contents of each fragment.

change-views-to-header
Changes every viewer within the current (or enclosing) container to be in the "header"
view, showing the interfaces of each fragment.

change-views-to-summary
Changes every viewer within the current (or enclosing) container to be in the "summary"
view, showing just one line summaries of each fragment.

Reference Manual

Page 6

1.6 Creating New Fragments
See creating fragments in the Sheets reference for general information.

extend-fragment
Tries to create a new fragment like the currently selected one. Will not work for every
sort of fragment.

insert-java-fragment
Insert a new java fragment.

insert-separator
Insert a seperator fragment (a horizontal line).

insert-sheet
Insert a new sheet at the current location. This will bring up the sheet properties dialog.

insert-image
Insert a new image fragment. The image lives in a file outside the Sheets database. The
file name is stored in the filename attribute.

insert-text-fragment
Insert a new ASCII text fragment. These fragments are deprecated, you should use
DocSheet paragraphs instead.

The following commands all create various XML fragment types:

insert-definition
Inserts a new DocSheet definition fragment.

insert-edit-command
Inserts a new DocSheet edit command fragment. (Note, this is probably only useful for
Sheets implementors.)

insert-edit-variable
Inserts a new DocSheet edit variable fragment. (Note, this is probably only useful for
Sheets implementors.)

insert-list
Inserts a new DocSheet list fragment. You control whether it is an ordered or unordered
list via the "ordered" attribute.

insert-paragraph
Inserts a new DocSheet ordinary paragraph.

Reference Manual

Page 7

intro-doc.html#creating-fragments
intro-doc.html#creating-fragments
intro-doc.html#creating-fragments
intro-doc.html#sheet-properties
intro-doc.html#sheet-properties
intro-doc.html#sheet-properties
#Sheets:nkramer:31911

insert-source
Inserts a new DocSheet "preformatted" paragraph

insert-section
Inserts a new DocSheet section. (If it is a top-level section, you may wish to export it via
the "properties" dialog.)

1.7 Navigation
show-query-dialog
Displays the Query dialog, and defaults to text search on the full view.

show-query-dialog-stringref
Displays the Query dialog, and defaults to text search on the name view.

show-query-dialog-stringdef
Displays the Query dialog, and defaults to text search on the full view.

show-query-dialog-javadef
Displays the Query dialog, and defaults to Definitions of search.

show-query-dialog-javaref
Displays the Query dialog, and defaults to References to name search.

show-query-dialog-javacomp
Displays the Query dialog, and defaults to References to the selected
fragment search.

show-query-dialog-javamembers
Displays the Query dialog, and defaults to Members of a class search.

show-query-dialog-javahierarchy
Displays the Query dialog, and defaults to Hierarchy Query.

goto-word
Searches for all fragments whose name matches the current word. This is typically slower
and less accurate than middle-clicking, but it can find "near matches" as well as exact
matches.

goto-word-references
Finds all Java fragments which reference the word under the cursor. Deprecated, use
goto-context (middle click) and then goto-fragment-references.

goto-word-definitions

Reference Manual

Page 8

#Sheets:ram:2607
#Sheets:ram:2607

Finds all Java fragments which have the same name as the word under the cursor.
Deprecated, use goto-context (middle-click).

goto-fragment-references
Finds all Java fragments which reference the selected fragment.

show-fragment-in-context
Finds all containers in which the selected fragment is contained. Successive executions
will cycle through all containers.

show-highlight-dialog
Displays the Hightlight String dialog.

copy-fragment-to-temp-sheet
Creates a new temporary sheet holding all of the selected fragments. Not really a
navigation command, but it often used after a navigation/query command leaves you with
multiple selections on a sheet.

1.8 File Commands
auto-sync : boolean = true
If true, bring the database up to date after each command that modifies it. This insures
that changes won't be lost on a crash, but can cause a noticable slowdown when working
on large databases.

show-new-project-dialog
Pops up a dialog allowing you to import or create a new project. Use this for starting new
programs or packages or for importing external sources.

show-import-dialog
Displays the import dialog used to fetch Java code or DocSheet XML documentation into
the database.

export-dirty-fragments
Export all of the Java fragments that have been modified or that might be affected by
some modification.

export-all-fragments
Export all fragments that can be exported, including DocSheet fragments.

show-save-dump-file-dialog
Show the dialog for saving dump files for all the projects currently in the database.

Reference Manual

Page 9

1.9 Window Management
show-projects-sheet
Show the sheet listing all the loaded projects.

show-affected-by-sheet
Show the affected-by sheet.

show-edit-sheet
Show the window displaying all the fragments currently being edited.

close-window
Close the current window. If it is viewing a temporary sheet, the sheet will also be
destroyed.

redraw-window
Repaints the contents of the window. You shouldn't ever have to do this, but bugs to
happen.

exit-program
Exits from sheets, closing all windows and syncing the database.

1.10 Compilation
(For setup information, see the compile-command variable and the introduction to
compilation.)

compile-program
Compiles the program, doing the minimal amount of recompilation necessary.

recompile-program
Recompiles the program from scratch.

show-compile-dialog
Displays the Compile Program dialog.

1.11 Java Specific Commands
java-documentation-url : String = (Sun's web site)
The location of Java HTML documentation, in JavaDoc format. The format of this field
is a sequence of PairOfStrings, where the first string is a package and the second is the
URL to use on that package. If a package name ends with ".*", we do globbing, so that
the user can specify the location of java.* and not have to list every last package.To find
documentation, Sheets will take this value and append the fully qualified name of the

Reference Manual

Page 10

#Sheets:ram:2785
#Sheets:ram:2785
intro-doc.html#Compilation

class plus ".html".

In order to allow pairs of strings to be specified, we make another creative extension to
the set statement:
set java-documentation-url["java.*"] "http://some-url"
complete-java-word
Completes the identifier under the text cursor. See section on word completion for
details.

goto-documentation
Launches a web browser to display the documentation for the selected fragment.

goto-documentation-for-selected-fragment
Tries to find a web page which describes the current fragment and show it to you in a
Web browser.

graph-java-hierarchy
Performs a hierarchy query on the selected fragment, and graphs the results.

graph-selected-fragments
Attempts to show a graph (or "forest") of all the selected Java fragments, plus their
parents and descendents. (Note that Sheets is not currently capable of displaying
"forests", so you are better off using "graph-java-hierarchy".

make-java-class-table
Creates a "table" displaying common properties for the selected Java classes. (Note: This
is an experimental feature.)

make-java-vtable
Creates a "table" displaying methods and inheritance for all subclasses of the selected
Java class. (Note: This is an experimental feature.)

comment-out-selection
Comments out all lines within the selected range of a Java comment. If you haven't
selected a range, or if you have selected several fragments, then the entire fragments will
be commented out.

uncomment-selection
Tries to remove the comments from the select range of lines in a Java fragment, or from
multiple selected Java fragments.

transform-field-to-method
Edits the current Java field fragment so that it has a procedural interface instead. (You
still have the choice to modify the generated methods or abort rather than committing the

Reference Manual

Page 11

intro-doc.html#Word_Completion
intro-doc.html#Word_Completion
intro-doc.html#Word_Completion
intro-doc.html#Word_Completion
#Sheets:ram:2627

edits.)

extend-class-methods
Edits a Java class fragment to contain "stub" routines for inherited methods.

show-software-metrics-dialog
Analyzes the Java code in the current database and displays reasonably comprehensive
software metrics.

1.12 XML (DocSheet) Commands
create-link
Creates an explicit user link within an XML (DocSheet) fragment. The selected text is
made into a link to whatever fragment(s) are in the cut buffer.

convert-urls-to-native-links
Converts HTML "URL-style" links to native Sheets links. Traditionally, you use this
after importing an HTML file into Sheets and then selecting all imported fragment.

strip-anchors
Clears out the "anchors" attribute of an XML (DocSheet) fragment.

transform-fragment-to-definition
Tries to transform the current fragment into an XML (DocSheet) fragment.

transform-fragment-to-edit-command
Tries to transform the current fragment into an XML (DocSheet) edit command fragment.
(Note -- this is probably only useful for Sheets implementors.)

transform-fragment-to-edit-variable
Tries to transform the current fragment into an XML (DocSheet) edit variable fragment.
(Note -- this is probably only useful for Sheets implementors.)

transform-fragment-to-list
Tries to transform the current fragment into an XML (DocSheet) list fragment.

transform-fragment-to-paragraph
Tries to transform the current fragment into an XML (DocSheet) paragraph fragment.

transform-fragment-to-preformatted
Tries to transform the current fragment into an XML (DocSheet) preformatted paragraph
fragment.

transform-fragment-to-section
Tries to transform the current fragment into an XML (DocSheet) section fragment.

Reference Manual

Page 12

transform-fragment-to-sheet
Tries to transform an XML (DocSheet) container fragment into an ordinary sheet.

transform-fragment-to-text-fragment
Tries to transform an XML (DocSheet) paragraph into an "ordinary" textual fragment.
(Note -- at this point there is probably no reason to use these fragments.)

demote-doc-fragment
An experimental command which tries to move or transfrom an XML (DocSheet)
fragment into something "less important".

promote-doc-fragment
Attempts to make a XML (DocSheet) fragment "more important" by transforming or
moving it. (Note: This is command should be considered experimental.)

1.13 Miscellaneous
show-key-bindings-dialog
Pops up a dialog listing all commands and their key bindings. This also allows you to
look up the documentation for any command.

show-global-undo-dialog
Pops up a dialog which allows you to undo (or potentially redo) fragment- and
container-level commands.

check-consistency
Checks the consistency of your database. This is probably only useful for sheets
maintainers.

2 Variables
In a .sheetsrc file, you can change the value of a variable by writing
set variable-name value

The name of the variable should be in lowercase, as .sheetsrc files are case sensitive.
Different variables have different sets of legal values. For boolean variables, the value should
be either true or false. For string variables, the string should be surrounded by double
quotes ("string").

The following is a list of variables that can be set in a .sheetsrc file; default values are
given after the equal sign.

2.1 Compilation

Reference Manual

Page 13

To compile programs within Sheets, you will need to set the following variables in your
.sheetsrc file:

compile-command : String = "javac %java%" recompile-command : String =
"javac %JAVA%"
These are the default command lines which will be used by the compile-program and
recompile-program commands. If you have a more complex program, you can also use it
to invoke a "make" utility. See sections on compilation and makefiles for details.

Note to non-Windows users: Java requires that you specify the full path to the executable
file.

Note to Windows users: Because of limitations in some Windows virtual machines,
command output may not be captured properly. We therefore provide a program named
"wrapper.exe" which will redirect ouput properly. If Sheets detects that you are
running on a windows architecture it will automatically wrap your compile commands
with this program. As a pleasant side-effect, the wrapper program knows about your
path environment variable, and thus you don't have to specify the full path of your
program.

error-pattern : String = (special)
A regular expression which is used to interpret compiler error messages. The
parenthesized sub-patterns should match the filename, line-number, and the actual error
message. This is a magic variable: you can set it multiple times, and the result is
cumulative. Values are automatically installed for Sun's javac and for Microsoft's jvc.

2.2 Documentation
java-documentation-url : String = (Sun's web site)
The location of Java HTML documentation, in JavaDoc format. The format of this field
is a sequence of PairOfStrings, where the first string is a package and the second is the
URL to use on that package. If a package name ends with ".*", we do globbing, so that
the user can specify the location of java.* and not have to list every last package.To find
documentation, Sheets will take this value and append the fully qualified name of the
class plus ".html".

In order to allow pairs of strings to be specified, we make another creative extension to
the set statement:
set java-documentation-url["java.*"] "http://some-url"
web-browser : String = (no useful default)
The command line to run the web browser. Note that you should specify the full path to
the executable file, as required by Java.

Reference Manual

Page 14

intro-doc.html#Customization
intro-doc.html#Customization
#Sheets:ram:2616
#Sheets:ram:2618
#Sheets:ram:2618
intro-doc.html#Compilation
intro-doc.html#Compilation
intro-doc.html#Makefile_Support

sheets-documentation-url : String = "SheetsHome/doc/reference.html"
The location of the Sheets reference manual. This is used by the Help dialog when you
select a command and click the Help button.

2.3 Miscellaneous Configuration
beep-file : String = "SheetsHome/beep.au"
The absolute pathname of a sound file (in AU format) that is used as the "beep" sound for
commands that can't be executed. If this variable is not set, you will get a visible warning
instead.

favorite-project : String = "unknown"
If for some reason, Sheets feels a need to guess which project a fragment should go in,
this value is used. If you are having problems with stuff showing up in the "unknown
project, you may want to set this to the name of the project you are working on.

auto-sync : boolean = true
If true, bring the database up to date after each command that modifies it. This insures
that changes won't be lost on a crash, but can cause a noticable slowdown when working
on large databases.

2.4 Preferences
These variables are called preferences in that sheets will work as intended if you don't set any
of them, however you may find that you very much want to set some of them.

emacs-bindings : boolean = false
Whether or not to use sort of vaguely Emacs-like keybindings. If you set this variable,
you should do so before any bind statement.

default-sheet-view : word = header
The default view for fragments when displayed on a sheet. Since not all fragments
support all views, there is actually a prioritized list of default views. When you use set
on this variable, what it actually does is add that view to the head of the list.

Most fragments do recognize the views "summary", "header", and "full".

show-with view-modifier show-without view-modifier
Turns defaults on or off for various view modifiers. This is a distinct .sheetsrc
statement, not either a set or a bind. For example:
show-with java-package-name

View modifiers simply change some property of a fragment display. The modifiers
java-package-name and java-class-name affect how the names of Java

Reference Manual

Page 15

#Commands
#Commands

fragments are shown. The modifier sheet-contents affects whether sheets are
displayed "open" or "closed".

goto-existing-window : boolean = true
Whether show-in-context commands can reuse existing windows, or should always create
new ones.

context-sheet-shows-most-general-first : boolean = true
If true, then the context sheet will show the most general (superclass) methods at the top
of the list. If false, the order is reversed.

global-undo-history-size : integer = 10
The number of commands that Global Undo will let you back up.

recenter-agressively : boolean = false
If true, Sheets will center the selected fragment/location more often. If false, Sheets will
recenter mainly to keep the selection on the screen.

allow-graph-reordering : boolean = false
If this is set, we get prettier graphs because we can avoid node crossing. On the other
hand, if it isn't set, graph traversals are more predictable.

condense-doc-toc : boolean = true
This controls whether ordinary doc paragraphs are shown normally in the TOC or are
hidden.

standard-java-indent : integer = 2
The number of spaces that each nested level of a Java fragment should be indented. The
Sheets project advocates a 2 space indentation, but some people find 4 spaces preferable.

2.4.1 Fonts
In another amazing syntactic innovation, the .sheetsrc supports a record-like syntax for
specifying information about how a particular sort of text should be displayed. You can
specify the point size (an integer), the font-name (a string) and whether a bold face
should be used (boolean).

Each kind of text is associated with a sort of variable which can be set with the set
statement, but only when a particular font attribute is designated. For example, you say:
set code-font.font-name = "courier"

all-fonts
A double-magic font pseudo-variable. If you set an attribute of this font, it sets the
attribute of all of the other display fonts. For example, this will set all fonts to

Reference Manual

Page 16

#Sheets:ram:2609
#Sheets:ram:2609
#Sheets:rgs:13560
#Sheets:rgs:13560
#Sheets:rgs:13560
#Sheets:rgs:13560

twelve-point:
set all-fonts.size = 12
code-font : font = Courier
The font used for displaying Java code.

toc-font : font = Helvetica
The font used to display the table-of-contents

summary-font : font = Helvetica
The font used to display summaries in the context help window.

graph-font : font = Helvetica
The font used to display graph labels.

documentation-font : font = TimesRoman
The font used to display DocSheet documentation text.

2.4.2 Display Layout
show-verbose-dialogs : boolean = true
If true, "verbose" message dialogs will be popped up. If false, the same messages will be
written to the console window from which Sheets was launched.

show-obvious-commands : boolean = true
Whether pull down menus should show "obvious" commands, like text cut + paste. The
theory is that the user will always call those commands using the keyboard shortcut, so
there's no point in even displaying the obvious commands. Try to be pretty conservative
in your notion of what is "obvious".

show-pull-down-menus : boolean = true
Whether or not to display pull down menus. (If the pull down menus are hidden, the user
will have to rely on popup menus.)

show-affected-by-sheet : boolean = false
Whether the affected-by sheet is shown by default.

show-context-sheet : boolean = true
Whether the context window is shown by default.

context-help-delay : integer = 100
The number of milliseconds that Sheets will wait between executing a cursor motion
command and updating the context sheet. You should consider increasing it if you find
that the display isn't keeping up with your keystrokes.

Reference Manual

Page 17

show-edit-sheet : boolean = true
If true, then display the window showing all edits currently in progress.

sheet-height : integer = (chosen based on screen size)
The default height (in pixels) of a window that contains a sheet.

short-sheet-height : integer = (chosen based on screen size)
The default height (in pixels) for the context window and the scratch sheet window.

windows-task-bar-height : integer = 28
The height of the MS-Windows task bar, in pixels. Default is 28, which works on at least
one machine. This is used to determine where to pop up the windows which are created at
the bottom of the screen. If you are using some other OS or have "auto-hide" set, 0 is an
excellent alternative.

wide-component-spacing : boolean = false
If this is true, we "double-space" between components -- otherwise it's closer to 1.5
spaces.

toc-width : integer = 20
The default width in characters of the TOC pane in an edit window.

editor-width : integer = 80
The default width in characters of the edit panel in an edit window.

3 The DocSheet Documentation Facility

3.1 What is documentation?
In Sheets, a documentation fragment is a piece of natural language text. Like everything else
in Sheets, documentation is broken into fragments. Documentation fragments include
paragraphs, sections, bulleted lists, and pre-formatted fragments.

Sheets documentation is based on XML. It looks a lot like HTML: you have angle brackets,
and you have to use < and > instead of the < and > characters. Normally, when you
view documentation fragments, the tags are invisible. However, when you begin editing a
fragment, the tags become visible again.

Some differences from HTML: XML is case sensitive; HTML is not. XML supports
minimization, which appears as a normal tag with a / character before the closing > -- this is
a tag that closes itself. Examples:
blah blah <normal-tag>contents</normal-tag> blah blah
blah blah <minimized-tag/> blah blah

Reference Manual

Page 18

(Minimization is not used much in DocSheet)

3.2 Basic Editing
You can create a new documentation fragment by using the Insert new menu item, which
is available on the pop up menu. You can also simply find an existing documentation
fragment, and type new text at the bottom, much like you would with a Java fragment. When
you commit the fragment, new documentation fragments will be created.

You can edit the text of the fragment in the usual way, just like you do code. Additional
operations are available: you can turn a paragraph into a section using the transforms menu
of the pop up menu. There are also DWIMish promote-doc-fragment and
demote-doc-fragment commands, which attempt to mimic the behavior of the tab key
in Microsoft Word's outline view . The promote command takes a documentation fragment
and makes it "more important." For instance, a paragraph will turn into a section, and a
section will be moved up in the hierarchy to make it a more important section. The promote
command is by default bound to control-shift-TAB.

The demote command does roughly the opposite of promote, making a fragment less
important. Sections turn into paragraphs, and paragraphs turn into items in lists. Demote is
bound to control-TAB.

Note that promote are demote are not completely reversible -- demoting several times and
then re-promoting the same number of times will give you something equally "important" as
what you started with, but it may not be identical -- you may be left with a paragraph rather
than, say, a preformatted.

Also note that promote and demote will refuse to work if the fragment is contained in more
than one container (has more than one parent) -- this is a problem MS-Word never had to
worry about!

3.3 More Documentation Fragments: lists, definitions, and Preformatted
A <list> is simply a list of fragments, and can be ordered or unordered. These are similar to
HTML ordered and unordered lists: ordered lists should be displayed with numbers, and
unordered lists are displayed with bullets. (This is how they appear when run through the
XML->HTML renderer. Inside Sheets, however, both kinds of lists look identical, save for
the title of the DocListFragment.)

A <definition> is where you give the definition of a word. There are two fields. In the Sheets
representation, definitions look like sub-sheets; the title of the definition is the word being
defined, while the body (contained fragments) is the descriptive text. Typically, the
descriptive text will be a paragraph fragment, although you can put any kind of fragment

Reference Manual

Page 19

#Sheets:rgs:13554
#Sheets:rgs:13554
#Sheets:rgs:13552
#Sheets:rgs:13552

there that you want. The title is not limited to a single term--if you want to have multiple
terms, put each of them on their own line.

A <preformatted> fragment is like the HTML <pre> tag. In a preformatted fragment, there is
no word wrap, and a fixed width font is used. Preformatteds do not yet use the rich text
engine, so all entities and tags are quite visible and ugly within Sheets.

3.4 Styles
A style is font information that does not cross fragment boundaries. Styles are abstract
concepts which apply to a range of concepts, but have no single visual representation. For
instance, there is an em style, which may be rendered in either italics or bold.

Styles may be nested, but they may not otherwse overlap, nor may they cross fragment
boundaries. To add styles to existing text, you simply type in XML tags for the style.

The built-in styles are: strong, em, and code (a fixed width font).

3.5 Links and anchors
To create a hyperlink, copy the target of the link into the cut buffer. (Note that the target of
the link does not have to be a documentation fragment) Then, select the start point of the link
and execute the create-link command, which can be found on the pop up menu. This
will create a link to the component in the cut buffer. You may then typing in a description of
the link, or if you leave that space blank, Sheets will use a summary view of that component.
(The link text will only appear when you export the file, unfortunately) This kind of linking
is known as native links. Example:

blah blah <link slot="0">This is a link</link> blah blah

To traverse a hyperlink, simply click on the link with the middle mouse button. If your
mouse does not have a third mouse button, you can simulate it by holding down the ALT key
while pressing the left mouse button.

To remove a link, simply delete the start and end tags. To change a link, edit the links
attribute.

Sheets also allows you to create documents that interact with HTML documents, using URL
links and anchors. To link directly to a URL, rather than to a fragment, write it as <link
URL = "whatever">. To create a URL anchor for a component, typing into the anchor
attribute of the fragment. If you wish for the fragment to contain more than one anchor, put
each anchor name on a new line. (Note that the anchor is for the entire fragment; there is no
way to create an anchor for a specific point within a fragment)

Reference Manual

Page 20

Another form of linking is the documentation attribute, which all fragments have.
Simply pick a fragment you wish to document, usually but not necessarily a Java code
fragment, and display its documentation attribute by selecting the Show Attribute
command from the pop up menu. Next, copy the target fragment (usually a documentation
fragment) into the documentation lists attribute.

There is a corresponding attribute, documentation-for, which is the reverse of the
documentation attribute. Sheets will automatically maintain the bi-directional of the of
these attribute, and you can get it either one.

3.6 Converting Documentation into HTML (rendering)
Sheets has three representations for documentation: an internal database representation,
external representation based on XML (also known as DocSheet), and an HTML
representation. The internal representation is what is used inside the database. To convert
from the Internal representation to the ex mill representation, you must export the fragments.
(This situation is analogous to the internal database representation vs. file representation of
Java programs)

For best viewing, you need to convert the XML documentation into HTML format, a process
known as rendering. There is no way to directly convert from the internal representation to
HTML. There is more than one way to render a given XML document; for instance, you
might render the emphasis style as either italics or bold. Sheets comes with one renderer, but
you can use a different one if you want. To run the default renderer, type:
docsheet2html < input.html > output.xml

The default renderer will automatically create a table of contents for your HTML document.
It will also create URL anchors for <edit-command>s and <edit-variable>s; the anchor will
be the same as the name of the command/variable.

If you wish to write your own render, consider using the XSL style sheet facility available
with most XML implementations. (The default renderer does not use XSL, because at the
time of implementation XSL was unstable. However, it has probably gotten better in the
intervening months...) You'll need to consult Appendix B for the structure of XML
documentation.

3.7 Converting HTML into sheets documentation
Sheets comes with an html2docsheet utility (found in the util directory) to assist
conversion from HTML into sheets documentation. The tool is not perfect, however. In fact,
it can't be perfect--HTML is simply too unstructured to convert perfectly. Instead, the HTML
to DocSheet tool uses heuristics to do the best it can.

Reference Manual

Page 21

#Sheets:nkramer:31942
#Sheets:nkramer:31942
#Sheets:nkramer:31942
#Sheets:nkramer:31942

One of the limitations of the conversion tool is that it only handles correct HTML. A
surprising number of web pages are actually not legal HTML; the converter will not be able
to handle them. If you encounter problems, try loading the HTML file into Netscape page
composer, and then resaving the file. This will fix most errors; any remaining problems will
have to be fixed by hand.

Command line usage:
html2docsheet < input.html > output.xml

Once you have a file in XML format, you can import it into Sheets much like you import
Java files. Select Import from the File menu, and select the file you wish to import. You
may need to do additional cleanup, as the HTML to XML converter is not perfect (see
above). When you import XML files, any hyperlinks will use URL's rather than native links.
(See section on linking for details) To convert these links into native links, select all
fragments you wish to converge which contain links that you wish to convert, and run the
convert-urls-to-native-links command. You'll be informed about any links that
can be converted into native links, because the corresponding anchor could not be found.

To remove URL anchors from fragments, select the fragments which have encouraged that
what you wish to remove, and run the strip-anchors command.

Tip: Use the recursive-flatten command to flatten all fragments in the a document,
and then select all the fragments using a shift click with a mouse. That way, you can easily
convert to native links or strip anchors in a single command.

3.8 Appendix A: Local extensions to DocSheet
An <edit-command> fragment is useful for describing the editor commands of Sheets. It is
similar to a definition fragment, but allows you to optionally specify a default key binding for
the command.

Similarly, <edit-variable> lets you describe variables that you can set in your .sheetrc
profile. Variables have a name, and optionally a type and a default value.

3.9 Appendix B: informal DTD of DocSheet

3.9.1 Structure Tags
Structure tags have a well defined grammar; some structure tags only go inside specific
structures. In Sheets, structured tags act as fragment boundaries.
// Toplevels will probably be component boundaries in Sheets
toplevel

<para>
| <section>

Reference Manual

Page 22

#Sheets:rgs:13530
#Sheets:rgs:13530
#Sheets:rgs:13532
#Sheets:rgs:13482

| <block-quote>
| <itemized-list>
| <ordered-list>
| <definition>
| <literal-layout>
| <graphic>
| <edit-command>
| <edit-variable>

<para>
styled-text

<section>
<title>
styled text

toplevel+
<unordered-list>
<list-item>+

<ordered-list>
<list-item>+

// DocSheet equivalent of HTML's <dt><dd> combo.
<definition>
<term>+
plain-text

top-level+
// Because Microsoft's XML parser throws out whitespace
// (in violation of the XML spec), we make liberal use of entities.
// Use for a space character, and <newline> for newlines.
// Tools should hide this kluge from users.
<preformatted>
styled-text

// Description for one or more edit commands
<edit-command>
<command>+
<name>
<default-key-binding>?

top-level+
// Description for one or more edit variables
<edit-variable>
<variable>+
<name>
<type>?
<default-value>?

top-level+

3.9.2 Links and Anchors
Native links are always turned into URL links upon export, thus there is no XML
representation of native links. We use object ids as the URL.

URL anchors are represented as XML attributes on the tag; if there is more than one anchor
for a fragment, we have multiple attributes that begin with "anchor" and end with a unique
integer. Example:

<para anchor1="what" anchor2="ever">

Reference Manual

Page 23

3.10 Appendix C: Relation to DocBook
DocSheet (the XML representation of documentation) started off as a slimmed down version
of DocBook, an industry standard SGML DTD. It diverged pretty quickly, however. I soon
concluded that it was more important to be familiar to HTML users than to maintain
similarity to DocBook. At this point, DocSheet has very little in common with DocBook.

3.11 Appendix D: Future work
Fix bugs w/ bidirectional attributes, and create the various promised attributes.

Implement <list-item> (currently, each item in the list is expected to be a single fragment).

Move ImageFragments into the Doc world.

Completely hide all aspects of XML from the user.

Have preformatteds do font-lock.

Allow links inside section titles.

Reference Manual

Page 24

